The stochastic block model (SBM) is a random graph model in which the edges are generated according to the underlying cluster structure on the vertices. The (ferromagnetic) Ising model, on the other hand, assigns $\pm 1$ labels to vertices according to an underlying graph structure in a way that if two vertices are connected in the graph then they are more likely to be assigned the same label. In SBM, one aims to recover the underlying clusters from the graph structure while in Ising model, an extensively-studied problem is to recover the underlying graph structure based on i.i.d. samples (labelings of the vertices). In this paper, we propose a natural composition of SBM and the Ising model, which we call the Stochastic Ising Block Model (SIBM). In SIBM, we take SBM in its simplest form, where $n$ vertices are divided into two equal-sized clusters and the edges are connected independently with probability $p$ within clusters and $q$ across clusters. Then we use the graph $G$ generated by the SBM as the underlying graph of the Ising model and draw $m$ i.i.d. samples from it. The objective is to exactly recover the two clusters in SBM from the samples generated by the Ising model, without observing the graph $G$. As the main result of this paper, we establish a sharp threshold $m^\ast$ on the sample complexity of this exact recovery problem in a properly chosen regime, where $m^\ast$ can be calculated from the parameters of SIBM. We show that when $m\ge m^\ast$, one can recover the clusters from $m$ samples in $O(n)$ time as the number of vertices $n$ goes to infinity. When $m<m^\ast$, we further show that for almost all choices of parameters of SIBM, the success probability of any recovery algorithms approaches $0$ as $n\to\infty$.


翻译:在 SBM 中, 我们的目标是从图形结构中回收基团。 在Ising 模型中, 一个被广泛研究的问题是要从i.i.d. 样本中恢复基团结构。 在本文中, 我们建议根据基本图形结构将1美元的标签分配给脊椎, 如果在图形中连接两个顶端, 那么它们就更有可能被分配到相同的标签。 在 SBM 中, 我们的目标是从图形结构中回收基团的基团。 在Ism 模型中, 一个被广泛研究的问题是根据i. i.d. 样本中的基本组结构( 标注) 。 在本文中, 我们建议SBM 和Ising 模型的自然构成, 我们称之为Schacast Ism 模型。 在SBM 中, 我们将SBM 的底部数据数分为两个等值的基团。 我们的底部和边缘独立连接到 $美元, 美元基组中, 我们从这个基组的底基组中, 我们用S& 美元来计算一个基组的底数。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年10月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
12+阅读 · 2019年12月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2020年11月22日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员