The Stochastic Block Model (SBM) is a popular probabilistic model for random graphs. It is commonly used to perform clustering on network data by aggregating nodes that share similar connectivity patterns into blocks. When fitting an SBM to a network which is partially observed, it is important to take into account the underlying process that originates the missing values, otherwise the inference may be biased. This paper introduces missSBM, an R-package fitting the SBM when the network is partially observed, i.e., the adjacency matrix contains not only 1 or 0 encoding presence or absence of edges but also NA encoding missing information between pairs of nodes. It implements a series of algorithms for fitting the binary SBM, possibly in the presence of external covariates, by performing variational inference for several observation processes. Our implementation automatically explores different block numbers to select the most relevant according to the Integrated Classification Likelihood (ICL) criterion. The ICL criterion can also help determine which observation process better corresponds to a given dataset. Finally, missSBM can be used to perform imputation of missing entries in the adjacency matrix. We illustrate the package on a network data set consisting in interactions between political blogs sampled during the French presidential election in 2007.
翻译:软盘块模型(SBM) 是随机图形流行的概率模型。 它通常用来通过将共享类似连接模式的节点汇总到各个区块来对网络数据进行分组。 当将磁盘块模型安装到一个部分观测的网络时, 必须考虑到产生缺失值的基本过程, 否则推论可能是偏差的。 本文引入了 MissSBM, 一个在网络被部分观察到时与SBM相匹配的R包, 也就是说, 匹配矩阵不仅包含1或0个编码存在或没有边缘, 而且还包含两个节点对齐之间缺少的NA编码信息。 它使用一系列算法来安装二进制SBM, 可能在外部变量存在时, 需要考虑产生缺失值的基本过程, 否则推论可能是偏差的。 我们的实施会自动探索不同的区号, 以便根据综合分类相似性(ICL) 标准选择最相关的区号。 ICL 标准还可以帮助确定哪些观察过程更符合给定的数据集。 最后, MISBM 可用于在2007年选举时对选举中缺少的组合进行干扰。