We study community detection in the contextual stochastic block model arXiv:1807.09596 [cs.SI], arXiv:1607.02675 [stat.ME]. In arXiv:1807.09596 [cs.SI], the second author studied this problem in the setting of sparse graphs with high-dimensional node-covariates. Using the non-rigorous cavity method from statistical physics, they conjectured the sharp limits for community detection in this setting. Further, the information theoretic threshold was verified, assuming that the average degree of the observed graph is large. It is expected that the conjecture holds as soon as the average degree exceeds one, so that the graph has a giant component. We establish this conjecture, and characterize the sharp threshold for detection and weak recovery.
翻译:我们用背景随机区块模型arXiv:1807.0959[cs.SI]、arXiv:1607.02675[stat.ME]研究社区探测问题。在arXiv:1807.09596[cs.SI]中,第二作者在使用高维节点和变量绘制稀疏图时研究了这一问题。他们使用统计物理的非硬性洞穴法,预测了在这一环境中社区探测的亮点。此外,信息理论阈值已经核实,假设观测到的图形的平均程度是很大的。预计预测值在平均度超过1时会尽快保持,因此该图有一个巨大的组成部分。我们建立这个洞穴,并描述探测和微弱恢复的亮点。