As stability testing execution logs can be very long, software engineers need help in locating anomalous events. We develop and evaluate two models for scoring individual log-events for anomalousness, namely an N-Gram model and a Deep Learning model with LSTM (Long short-term memory). Both are trained on normal log sequences only. We evaluate the models with long log sequences of Android stability testing in our company case and with short log sequences from HDFS (Hadoop Distributed File System) public dataset. We evaluate next event prediction accuracy and computational efficiency. The LSTM model is more accurate in stability testing logs (0.848 vs 0.865), whereas in HDFS logs the N-Gram is slightly more accurate (0.904 vs 0.900). The N-Gram model has far superior computational efficiency compared to the Deep model (4 to 13 seconds vs 16 minutes to nearly 4 hours), making it the preferred choice for our case company. Scoring individual log events for anomalousness seems like a good aid for root cause analysis of failing test cases, and our case company plans to add it to its online services. Despite the recent surge in using deep learning in software system anomaly detection, we found limited benefits in doing so. However, future work should consider whether our finding holds with different LSTM-model hyper-parameters, other datasets, and with other deep-learning approaches that promise better accuracy and computational efficiency than LSTM based models.


翻译:由于稳定性测试执行日志可能非常长,软件工程师需要帮助定位异常事件。 我们开发并评价两种模型,用于为异常事件评分单日志活动,即N-Gram模型和LSTM(长短期内存)的深学习模型。 这两种模型都只接受正常日志序列的培训。 我们用公司案例的Android稳定性测试的长日志序列和HDFS(Hadoop分流文件系统)公开数据集的短日志序列来评估模型。 我们评估下一个事件的预测准确性和计算效率。 LSTM模型在稳定性测试日志上(0.848848对0.865)更加精确,而N-Gram模型在HDFS中则略为精确(0.904对0.900)。 N-Gram模型的计算效率远优于深模型(4至13秒对16分钟至近4小时)的计算,因此我们更喜欢我们的案件公司的选择。 将单个日志事件计事件记录事件比其他测试案例的准确性分析要好得多, 使用最近的测试案例的根基计算模型, 也认为我们将来的测算系统测算计划 是否保持了不同的测算。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
118+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Deep Learning(深度学习)各种资料网址
数据挖掘入门与实战
11+阅读 · 2017年10月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
27+阅读 · 2020年12月24日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Deep Learning(深度学习)各种资料网址
数据挖掘入门与实战
11+阅读 · 2017年10月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员