As a projection-free algorithm, Frank-Wolfe (FW) method, also known as conditional gradient, has recently received considerable attention in the machine learning community. In this dissertation, we study several topics on the FW variants for scalable projection-free optimization. We first propose 1-SFW, the first projection-free method that requires only one sample per iteration to update the optimization variable and yet achieves the best known complexity bounds for convex, non-convex, and monotone DR-submodular settings. Then we move forward to the distributed setting, and develop Quantized Frank-Wolfe (QFW), a general communication-efficient distributed FW framework for both convex and non-convex objective functions. We study the performance of QFW in two widely recognized settings: 1) stochastic optimization and 2) finite-sum optimization. Finally, we propose Black-Box Continuous Greedy, a derivative-free and projection-free algorithm, that maximizes a monotone continuous DR-submodular function over a bounded convex body in Euclidean space.


翻译:作为不投影的算法,Frank-Wolfe (FW) 方法,又称有条件梯度,最近在机器学习界受到相当重视。在这个论文中,我们研究了关于可缩放投影不优化的FW变量的若干专题。我们首先提出了1-SFW,这是第一个不需要投影的方法,它要求每次循环只用一个样本来更新优化变量,但还是实现了最已知的 convex、非Convex和单体DR-Submodular设置的复杂界限。然后,我们向分布式设置前进,并开发了量化的Frank-Wolfe(QFW),这是一个通用的通信高效分布FW框架,用于连接和非convex目标功能。我们研究了QFW在两种广泛公认的环境中的绩效:1) 沙缩优化和2) 有限总和优化。最后,我们提出了一种无衍生物和投影化的Box持续腐蚀法,以最大限度地实现Eu Clevide 的单体连续DR-Submodal 函数。

0
下载
关闭预览

相关内容

专知会员服务
141+阅读 · 2021年3月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
1+阅读 · 2021年6月30日
Arxiv
6+阅读 · 2021年6月24日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
VIP会员
相关VIP内容
专知会员服务
141+阅读 · 2021年3月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员