We consider the problem of reinforcement learning (RL) with unbounded state space motivated by the classical problem of scheduling in a queueing network. Traditional policies as well as error metric that are designed for finite, bounded or compact state space, require infinite samples for providing any meaningful performance guarantee (e.g. $\ell_\infty$ error) for unbounded state space. That is, we need a new notion of performance metric. As the main contribution of this work, inspired by the literature in queuing systems and control theory, we propose stability as the notion of "goodness": the state dynamics under the policy should remain in a bounded region with high probability. As a proof of concept, we propose an RL policy using Sparse-Sampling-based Monte Carlo Oracle and argue that it satisfies the stability property as long as the system dynamics under the optimal policy respects a Lyapunov function. The assumption of existence of a Lyapunov function is not restrictive as it is equivalent to the positive recurrence or stability property of any Markov chain, i.e., if there is any policy that can stabilize the system then it must possess a Lyapunov function. And, our policy does not utilize the knowledge of the specific Lyapunov function. To make our method sample efficient, we provide an improved, sample efficient Sparse-Sampling-based Monte Carlo Oracle with Lipschitz value function that may be of interest in its own right. Furthermore, we design an adaptive version of the algorithm, based on carefully constructed statistical tests, which finds the correct tuning parameter automatically.


翻译:我们考虑的是强化学习问题(RL),其不受约束的状态空间是由排队网络的典型排队问题驱动的。传统政策以及针对有限、封闭或紧凑状态空间设计的错误度量,需要无限的样本,为无约束状态空间提供任何有意义的性能保障(例如$@ell ⁇ infty$错误),也就是说,我们需要一个新的性能衡量概念。由于在排队系统和控制理论中的文献启发下,这项工作的主要贡献是“良好”的概念:政策下的国家动态应该保留在一个受约束、受约束或紧凑状态空间的精选区域。作为概念的证明,我们提出使用基于Sprass-Sampinging-Monte Carlo Oracle的RLLLLL政策,并主张只要最佳政策下的系统动态尊重Lyapunov的功能,它就能够满足稳定性属性。Lyapunov功能的存在并不具有限制性,因为它相当于任何Markov链的正值复现或稳定性,也就是说,如果有任何政策能够稳定系统的精度,那么,我们可以用一个基于Lypov的精度的精度的精度的精度的精度测试,那么,那么,我们就可以使用一个精度的精度的精度的精度的精度的精度测试功能。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
6+阅读 · 2018年4月24日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关论文
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
6+阅读 · 2018年4月24日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
3+阅读 · 2018年1月31日
Top
微信扫码咨询专知VIP会员