Recent named entity recognition (NER) models often rely on human-annotated datasets requiring the vast engagement of professional knowledge on the target domain and entities. This work introduces an ask-to-generate approach, which automatically generates NER datasets by asking simple natural language questions to an open-domain question answering system (e.g., "Which disease?"). Despite using fewer training resources, our models solely trained on the generated datasets largely outperform strong low-resource models by 20.8 F1 score on average across six popular NER benchmarks. Our models also show competitive performance with rich-resource models that additionally leverage in-domain dictionaries provided by domain experts. In few-shot NER, we outperform the previous best model by 5.2 F1 score on three benchmarks and achieve new state-of-the-art performance.


翻译:最近命名的实体识别(NER)模式往往依赖需要广泛参与目标领域和实体方面专业知识的人类附加说明数据集。这项工作引入了问与源方法,通过向开放域问题回答系统(例如“什么疾病 ” ) 询问简单的自然语言问题自动生成NER数据集。 尽管使用的培训资源较少,但我们仅就生成的数据集接受过培训的模型在六个广受欢迎的NER基准中平均超过20.8 F1分的强力低资源模型。 我们的模型还展示了富资源模型的竞争性性能,这些模型在域专家提供的域域域词中也起到额外的杠杆作用。 在少数发光的NER中,我们通过5.2 F1在三个基准上比以往的最佳模型高,并实现了新的最新业绩。

0
下载
关闭预览

相关内容

命名实体识别(NER)(也称为实体标识,实体组块和实体提取)是信息抽取的子任务,旨在将非结构化文本中提到的命名实体定位和分类为预定义类别,例如人员姓名、地名、机构名、专有名词等。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
4+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
20+阅读 · 2020年6月8日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关基金
国家自然科学基金
4+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员