In a recent methodological paper, we have shown how to learn chaotic dynamics along with the state trajectory from sequentially acquired observations, using local ensemble Kalman filters. Here, we more systematically investigate the possibilty to use a local ensemble Kalman filter with either covariance localization or local domains, in order to retrieve the state and a mix of key global and local parameters. Global parameters are meant to represent the surrogate dynamics, for instance through a neural network, which is reminiscent of data-driven machine learning of dynamics, while the local parameters typically stand for the forcings of the model. A family of algorithms for covariance and local domain localization is proposed in this joint state and parameter filter context. In particular, we show how to rigorously update global parameters using a local domain EnKF such as the LETKF, an inherently local method. The approach is tested with success on the 40-variable Lorenz model using several of the local EnKF flavors. A two-dimensional illustration based on a multi-layer Lorenz model is finally provided. It uses radiance-like non-local observations, and both local domains and covariance localization in order to learn the chaotic dynamics, the local forcings, and the couplings between layers. This paper more generally addresses the key question of online estimation of both global and local model parameters.


翻译:在最近的一份方法文件中,我们展示了如何从按顺序获得的观测中学习混乱的动态以及州轨轨迹,并使用当地共同制的卡尔曼过滤器。在这里,我们更系统地调查隐性,以便使用具有共变本地化或本地域的本地共同式卡尔曼过滤器,以检索状态和关键全球和地方参数的组合。全球参数意在通过神经网络来代表代位动态,例如,通过神经网络,这种网络是数据驱动机器动态学习的记忆,而当地参数通常是模型的驱动力。在这个联合州和参数过滤器背景下,提出了一套用于共变和本地域本地域本地化的算法。特别是,我们展示了如何用本地域EKF(如LETKF,一种固有的本地方法)等本地域域域域域域域来严格更新全球参数。这个方法是经过40种可变的Lorenz模型的成功测试的,该模型是利用当地 EnKF 调的几种地方调味。一个基于多层Lorenz模型的二维参数说明,最终提供了多种Lorenz模型的模型。在这个联合式和参数的筛选环境中的模型中,它使用这种类似于的摩变动式的本地级观察法, 和本地级的系统, 以及本地级的地级和本地级的地平级的测测图。它使用这种比较式的比较式,在比较式的地平地的图,在比较式,在比较式的图中,在比较式,在比较式,在比较式的图中,在比较式的图中,在比较式之间,在比较式的图中,在比较式的,在比较式的图中,在比较式的图中,在比较式的图中,在比较式的地的地级和本地的图中,在比较式的图中,在比较式的,在比较式的,在比较式的地级的地级的,在比较式的图中,在比较式的图中,在比较式的图中,在比较式的图中,在比较式的,在比较式的地级中,在比较式的图中,在比较式的地级的地级的地级中,在比较式中,在比较式的地级的地级的地级的地级的地级

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员