We consider the fundamental problem of solving a large-scale system of linear equations. In particular, we consider the setting where a taskmaster intends to solve the system in a distributed/federated fashion with the help of a set of machines, who each have a subset of the equations. Although there exist several approaches for solving this problem, missing is a rigorous comparison between the convergence rates of the projection-based methods and those of the optimization-based ones. In this paper, we analyze and compare these two classes of algorithms with a particular focus on the most efficient method from each class, namely, the recently proposed Accelerated Projection-Based Consensus (APC) and the Distributed Heavy-Ball Method (D-HBM). To this end, we first propose a geometric notion of data heterogeneity called angular heterogeneity and discuss its generality. Using this notion, we bound and compare the convergence rates of the studied algorithms and capture the effects of both cross-machine and local data heterogeneity on these quantities. Our analysis results in a number of novel insights besides showing that APC is the most efficient method in realistic scenarios where there is a large data heterogeneity. Our numerical analyses validate our theoretical results.


翻译:我们考虑解决大规模线性方程组的基本问题。特别是,我们考虑任务主管希望在分布式/联合方式下解决该系统,借助一组机器的帮助,这些机器每个机器都有一部分方程。虽然有几种方法可以解决此问题,但缺少关于基于投影方法和基于优化方法的收敛速度的严格比较。在本文中,我们分析比较了这两类算法,重点关注每类算法的最有效方法,即,最近提出的加速投影共识(APC)和分布式重棒法(D-HBM)。为此,我们首先提出了一种几何异构数据的概念,称为角度异构性,并讨论了它的普遍性。使用这个概念,我们限制并比较了研究算法的收敛速度,并捕捉了跨机器和本地数据异构性对这些数量的影响。我们的分析产生了许多新的见解,除了显示APC是最有效的方法,在存在大量数据异构性的现实情景中。我们的数值分析验证了我们的理论结果。

0
下载
关闭预览

相关内容

【元宇宙】“The State Of The Metaverse”26页报告
专知会员服务
44+阅读 · 2022年5月25日
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
162+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月5日
Arxiv
0+阅读 · 2023年6月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员