The "Sum-Over-Paths" formalism is a way to symbolically manipulate linear maps that describe quantum systems, and is a tool that is used in formal verification of such systems. We give here a new set of rewrite rules for the formalism, and show that it is complete for "Toffoli-Hadamard", the simplest approximately universal fragment of quantum mechanics. We show that the rewriting is terminating, but not confluent (which is expected from the universality of the fragment). We do so using the connection between Sum-over-Paths and graphical language ZH-Calculus, and also show how the axiomatisation translates into the latter. Finally, we show how to enrich the rewrite system to reach completeness for the dyadic fragments of quantum computation -- obtained by adding phase gates with dyadic multiples of $\pi$ to the Toffoli-Hadamard gate-set -- used in particular in the Quantum Fourier Transform.
翻译:“ Sum- Over-Paths” 形式主义是象征性地操纵描述量子系统的线性地图的一种方法,并且是用于正式核查这种系统的工具。 我们在此给出一套新的格式化重写规则, 并显示它对于“ Toffoli- Hadamard” 来说是完整的, 也就是量子力学最简单、 最通用的碎片。 我们显示重写正在终止, 而不是( 由碎片的普遍性所预期的) 。 我们这样做时, 我们使用的是超超版和图形语言 ZH- Calculs 之间的连接, 并且还展示了对等化是如何转化为后者的。 最后, 我们展示了如何丰富重写系统, 以便实现量子计算dyadic 碎片的完整。 这是通过向Toffoli- Hadamard 门设置添加 dic 倍值为 $\ pipi 的阶梯门, 特别是用于 Quantum Fourier 变换的。