We study quantum algorithms on search trees of unknown structure, in a model where the tree can be discovered by local exploration. That is, we are given the root of the tree and access to a black box which, given a vertex $v$, outputs the children of $v$. We construct a quantum algorithm which, given such access to a search tree of depth at most $n$, estimates the size of the tree $T$ within a factor of $1\pm \delta$ in $\tilde{O}(\sqrt{nT})$ steps. More generally, the same algorithm can be used to estimate size of directed acyclic graphs (DAGs) in a similar model. We then show two applications of this result: a) We show how to transform a classical backtracking search algorithm which examines $T$ nodes of a search tree into an $\tilde{O}(\sqrt{T}n^{3/2})$ time quantum algorithm, improving over an earlier quantum backtracking algorithm of Montanaro (arXiv:1509.02374). b) We give a quantum algorithm for evaluating AND-OR formulas in a model where the formula can be discovered by local exploration (modeling position trees in 2-player games). We show that, in this setting, formulas of size $T$ and depth $T^{o(1)}$ can be evaluated in quantum time $O(T^{1/2+o(1)})$. Thus, the quantum speedup is essentially the same as in the case when the formula is known in advance.
翻译:我们用一种模型研究未知结构的搜索树的量子算法, 模型中树可以通过本地勘探发现树。 也就是说, 给了我们树根和黑盒的使用权, 有了顶点值美元, 我们就可以输出子值美元。 我们建了一个量子算法, 有了这种访问深度搜索树的量子算法, 在1美元\pm\ delta$\ del$范围内估计树的大小, 以$\ tde{O} (\qrt{nT}} (\qrt{nT}}} 美元计算。 更一般地说, 同样的算法可以用来估计类似模型中的定向循环图(DAGs) 的大小。 然后我们展示了这个结果的两个应用 : a) 典型的回溯追踪算法, 将搜索树的值值值值作为 $tilde{O} (\\qr>} (n_ 3/2} 时间算法中, 可以用一个已知的量子值追溯算算法来评估Monanaro(arX: 1509.