Stimulated by practical applications arising from viral marketing. This paper investigates a novel Budgeted $k$-Submodular Maximization problem defined as follows: Given a finite set $V$, a budget $B$ and a $k$-submodular function $f: (k+1)^V \mapsto \mathbb{R}_+$, the problem asks to find a solution $\s=(S_1, S_2, \ldots, S_k)$, each element $e \in V$ has a cost $c_i(e)$ to be put into $i$-th set $S_i$, with the total cost of $s$ does not exceed $B$ so that $f(\s)$ is maximized. To address this problem, we propose two streaming algorithms that provide approximation guarantees for the problem. In particular, in the case of each element $e$ has the same cost for all $i$-th sets, we propose a deterministic streaming algorithm which provides an approximation ratio of $\frac{1}{4}-\epsilon$ when $f$ is monotone and $\frac{1}{5}-\epsilon$ when $f$ is non-monotone. For the general case, we propose a random streaming algorithm that provides an approximation ratio of $\min\{\frac{\alpha}{2}, \frac{(1-\alpha)k}{(1+\beta)k-\beta} \}-\epsilon$ when $f$ is monotone and $\min\{\frac{\alpha}{2}, \frac{(1-\alpha)k}{(1+2\beta)k-2\beta} \}-\epsilon$ when $f$ is non-monotone in expectation, where $\beta=\max_{e\in V, i , j \in [k], i\neq j} \frac{c_i(e)}{c_j(e)}$ and $\epsilon, \alpha$ are fixed inputs.


翻译:(k+1)V\\\mapsto\mathb{R}$,问题在于找到一个解决方案$=(S_1,S_2,\eldots,S_k),每个元素都有成本 $_i(e) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元) 美元(美元)

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年12月17日
Arxiv
0+阅读 · 2021年12月16日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员