This paper studies the online correlated selection (OCS) problem. It was introduced by Fahrbach, Huang, Tao, and Zadimoghaddam (2020) to obtain the first edge-weighted online bipartite matching algorithm that breaks the $0.5$ barrier. Suppose that we receive a pair of elements in each round and immediately select one of them. Can we select with negative correlation to be more effective than independent random selections? Our contributions are threefold. For semi-OCS, which considers the probability that an element remains unselected after appearing in $k$ rounds, we give an optimal algorithm that minimizes this probability for all $k$. It leads to $0.536$-competitive unweighted and vertex-weighted online bipartite matching algorithms that randomize over only two options in each round, improving the $0.508$-competitive ratio by Fahrbach et al. (2020). Further, we develop the first multi-way semi-OCS that allows an arbitrary number of elements with arbitrary masses in each round. As an application, it rounds the Balance algorithm in unweighted and vertex-weighted online bipartite matching and is $0.593$-competitive. Finally, we study OCS, which further considers the probability that an element is unselected in an arbitrary subset of rounds. We prove that the optimal "level of negative correlation" is between $0.167$ and $0.25$, improving the previous bounds of $0.109$ and $1$ by Fahrbach et al. (2020). Our OCS gives a $0.519$-competitive edge-weighted online bipartite matching algorithm, improving the previous $0.508$-competitive ratio by Fahrbach et al. (2020).
翻译:本文研究了在线相关选择( OCS) 问题 。 由 Fahrbach、 Huang、 Tao 和 Zadimoghaddadam ( 2020) 推出此文件是为了获得第一个突破0. 5美元屏障的精度加权在线双部分匹配算法。 假设我们每回合收到一对元素, 然后立即选择其中之一。 我们能否以负相关性选择比独立随机选择更有效? 我们的贡献是三倍。 半OCS认为一个元素在每回合中出现美元后仍未被选中的可能性, 我们给出了一种最佳算法, 将所有美元比率的这一概率降到最低。 它导致536美元具有竞争力的非加权和顶值在线双部分匹配算法, 每回合只随机增加两个选项, 改善Fahrbach 等人( 202020年) 的0. 508美元竞争比率。 此外, 我们开发了第一个多方向半OCSSS, 允许每回合中任意质量元素的任意数量。 作为应用, 平衡算出非加权和顶值 $ $ $ 0. 美元 0. 19 双平比值的比值比值的比值 的比值比值比值 的比值 的比值 的比值 最终认为我们更有理由的概率 。 。 我们的比值 20 的比值 的比值 的比值 的比值是 。 。