We propose a generic variance-reduced algorithm, which we call MUltiple RANdomized Algorithm (MURANA), for minimizing a sum of several smooth functions plus a regularizer, in a sequential or distributed manner. Our method is formulated with general stochastic operators, which allow us to model various strategies for reducing the computational complexity. For example, MURANA supports sparse activation of the gradients, and also reduction of the communication load via compression of the update vectors. This versatility allows MURANA to cover many existing randomization mechanisms within a unified framework, which also makes it possible to design new methods as special cases.
翻译:我们建议采用通用差异减少算法,我们称之为Multiple Randomized Algorithm(MURANA),以便以顺序或分布的方式,最大限度地减少几个顺畅功能和常规功能的总和。我们的方法是与一般的随机操作员共同制定的,这使我们能够模拟各种降低计算复杂性的战略。例如,MURANA支持通过压缩更新矢量来稀释梯度,并通过压缩更新矢量来减少通信负荷。这种多功能性使得MURANA能够在统一的框架内覆盖许多现有的随机机制,这也使得有可能设计新的特殊方法。</s>