Conformal prediction (CP) is a wrapper around traditional machine learning models, giving coverage guarantees under the sole assumption of exchangeability; in classification problems, for a chosen significance level $\varepsilon$, CP guarantees that the number of errors is at most $\varepsilon$, irrespective of whether the underlying model is misspecified. However, the prohibitive computational costs of full CP led researchers to design scalable alternatives, which alas do not attain the same guarantees or statistical power of full CP. In this paper, we use influence functions to efficiently approximate full CP. We prove that our method is a consistent approximation of full CP, and empirically show that the approximation error becomes smaller as the training set increases; e.g., for $10^{3}$ training points the two methods output p-values that are $<10^{-3}$ apart: a negligible error for any practical application. Our methods enable scaling full CP to large real-world datasets. We compare our full CP approximation ACP to mainstream CP alternatives, and observe that our method is computationally competitive whilst enjoying the statistical predictive power of full CP.
翻译:综合预测(CP)是围绕传统机器学习模式的包装(CP),在唯一可兑换性假设下提供覆盖保障;在分类问题中,对于所选择的临界值,美元和瓦列普西隆元,CP保证错误的数量最多为$和瓦列普西隆元,而不论基本模型的描述是否错误。然而,全CP的令人望而却步的计算成本导致研究人员设计了可缩放的替代方法,这些替代方法不能达到完全CP的保证或统计能力。在本文中,我们利用影响功能来有效地接近全部CP。我们证明,我们的方法是完全CP的近似近似值,从经验上看,我们的方法随着培训设置的增加,近似误差会越来越小;例如,10 ⁇ 3美元的培训显示,两种方法的输出值是 < 10 ⁇ -3美元,而两者相隔开来是微不足道的错误。我们的方法能够将整个CP缩放成大型真实世界数据集。我们将我们的全CP接近非加太(CP)用于将CP替代方法纳入主流,并且我们的方法在享受全CP的统计预测能力的同时计算具有竞争性。