The need to understand the role of statistical methods for the forecasting of climatological parameters cannot be trivialized. This study gives an in depth review on the different variations of the Mann-Kendall (M-K) trend test and how they can be applied, regression techniques (Simple and Multiple), the Angstrom-Prescott model for solar radiation, etc. The study then goes ahead to apply some of them with data obtained from the Nigerian Meteorological Agency (NiMet), and applying tools like the python programming language and Wolfram Mathematica. Results show that the maximum ambient temperature for Calabar is increasing (Z=2.52) significantly after the calculated p-value < 0.05 (significant level). The seasonal M-K test was also applied for the dry and wet seasons and both were found to be increasing (Z=3.23 and Z=4.04 respectively) after their calculated p-values < 0.05. The relationship between refractivity and other meteorological parameters relating to it was discerned using partial differential equations giving the gradient of each with refractivity; this was compared with results from the correlation matrix to show that the water vapour contents of the atmosphere contributes significantly to the variation of refractivity. Multiple linear regression has also been adopted to give an accurate model for the prediction of refractivity in the region after the residual error between the calculated refractivity and predicted refractivity was minimal.


翻译:理解统计方法在预测气候参数方面的作用的必要性是不可轻视的。 本研究深入地审查了曼-肯达尔(M-K)趋势测试的不同变异,以及如何应用这些变异、回归技术(简单和多重)、Angstrom-Prescott太阳辐射模型等。 然后,研究运用从尼日利亚气象局(NiMet)获得的数据,并运用Python编程语言和Wolfram Mathematica等工具,运用其中一些方法。结果显示,在计算p-value < 0.05(高水平)之后,卡拉巴尔的最大环境温度( ⁇ 2.52)显著上升。 季节性M-K测试也应用于旱季和湿季,在计算p-value值 < 0.05(NiMet)之后,发现这两个测试中的一些(分别为 ⁇ 3.23和 ⁇ 4.04)数据在应用。 利用部分差异方程式显示每种变异度的梯度的方程式和Wolfram Mathematica等工具。结果显示,Calabar的最大环境温度在计算 p-valental 0.05 (Qrental commestive) ral reviewal conviewactal conviewactation 之间,这又显示了大气中的多度,使大气再变化为大气中,使反复变为大气的数值转化为变为大气的精确的精确性提供了。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
【干货书】数值Python计算,Numerical Python,709页pdf
专知会员服务
112+阅读 · 2021年5月30日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年8月10日
Arxiv
0+阅读 · 2021年8月6日
Arxiv
0+阅读 · 2021年8月6日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员