In this work, we prove new results concerning the combinatorial properties of random linear codes. Firstly, we prove a lower bound on the list-size required for random linear codes over $\mathbb F_q$ $\varepsilon$-close to capacity to list-recover with error radius $\rho$ and input lists of size $\ell$. We show that the list-size $L$ must be at least $\frac{\log_q\binom{q}{\ell}-R}{\varepsilon}$, where $R$ is the rate of the random linear code. As a comparison, we also pin down the list size of random codes which is $\frac{\log_q\binom{q}{\ell}}{\varepsilon}$. This leaves open the possibility (that we consider likely) that random linear codes perform better than random codes for list-recoverability, which is in contrast to a recent gap shown for the case of list-recovery from erasures (Guruswami et al., IEEE TIT 2021B). Next, we consider list-decoding with constant list-sizes. Specifically, we obtain new lower bounds on the rate required for list-of-$3$ decodability of random linear codes over $\mathbb F_2$; and list-of-$2$ decodability of random linear codes over $\mathbb F_q$ (for any $q$). This expands upon Guruswami et al. (IEEE TIT 2021A) which only studied list-of-$2$ decodability of random linear codes over $\mathbb F_2$. Further, in both cases we are able to show that the rate is larger than that which is possible for uniformly random codes.


翻译:在这项工作中, 我们证明随机线性代码的组合属性有新的结果。 首先, 我们证明, 美元是随机线性代码的速率, 其列表大小比 $\ mathbf F_ q$_ q_ qbinom{q_ qell_ varepsilon} 更接近于以错误半径$\ rho$ 美元和大小为$\ ell$的输入列表重新覆盖的能力。 我们显示, 列表大小的美元必须至少是$\\ log_ q\ binom{qhell{ qhrepsilon} $美元。 我们显示, 列表大小至少为$21 美元 qtreme2 $- rassuralwami 。 在随机线性代码中, 将 $20- etelwami et etal codeal 值比 $ $ 20_ tIT 2021B美元 。 的 Orality lecomblecable licolal lex lex ladeal ladeal ladeal dex code, 我们考虑以 codeal codeal codeal dromodeal dow_ frodudeal codeal downal d list downal_ fromodal_ frobal libledal ledal_ fol liblational libal libledal_ libal ledaldaldal ledal libaldals libal libs lications libal libal libal libal libal libal libal ledal libal libal lical libal libal lical libal libal le le lical lical lid le le le le le ledal led led led led ledal le le le le le libal le le

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月21日
Arxiv
0+阅读 · 2022年6月20日
Arxiv
0+阅读 · 2022年6月19日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员