For rare events described in terms of Markov processes, truly unbiased estimation of the rare event probability generally requires the avoidance of numerical approximations of the Markov process. Recent work in the exact and $\varepsilon$-strong simulation of diffusions, which can be used to almost surely constrain sample paths to a given tolerance, suggests one way to do this. We specify how such algorithms can be combined with the classical multilevel splitting method for rare event simulation. This provides unbiased estimations of the probability in question. We discuss the practical feasibility of the algorithm with reference to existing $\varepsilon$-strong methods and provide proof-of-concept numerical examples.
翻译:对于以Markov过程描述的稀有事件,对稀有事件概率的真正公正估计一般要求避免Markov过程的数字近似值。最近对扩散的精确和$$-varepsilon-坚固的模拟工作可以几乎肯定地将样本路径限制在给定的容忍度上。我们具体说明了如何将这种算法与典型的稀有事件模拟的多层次分解方法相结合。这为有关概率提供了不偏袒的估计。我们参照现有的$-varepsilon-gard方法讨论了算法的实际可行性,并提供了有证据的概念数字实例。