Generalization error bounds are critical to understanding the performance of machine learning models. In this work, building upon a new bound of the expected value of an arbitrary function of the population and empirical risk of a learning algorithm, we offer a more refined analysis of the generalization behaviour of a machine learning models based on a characterization of (bounds) to their generalization error moments. We discuss how the proposed bounds -- which also encompass new bounds to the expected generalization error -- relate to existing bounds in the literature. We also discuss how the proposed generalization error moment bounds can be used to construct new generalization error high-probability bounds.
翻译:通用错误的界限对于理解机器学习模型的性能至关重要。 在这项工作中,在人口任意功能的预期价值和学习算法的经验风险的新界限的基础上,我们根据对一般错误时刻(界限)的定性,对机器学习模型的通用行为进行更精确的分析。我们讨论拟议的界限 -- -- 也包括预期普遍错误的新界限 -- -- 与文献中的现有界限的关系。我们还讨论如何利用拟议的通用错误时刻界限来构建新的通用错误高概率界限。