We consider the use of rational basis functions to compute the scattering and inverse scattering transforms associated with the AKNS system. The proposed numerical forward scattering transform computes the solution of the AKNS system that is valid on the entire real axis and thereby computes a reflection coefficient at a point by solving a single linear system. The proposed numerical inverse scattering transform makes use of a novel improvement in the rational function approach to the oscillatory Cauchy operator, enabling the efficient solution of certain Riemann--Hilbert problems without contour deformations. The latter development enables access to high-precision computations and this is demonstrated on the inverse scattering transform for the one-dimensional Schr\"odinger operator with a $\mathrm{sech}^2$ potential.
翻译:我们考虑使用合理基函数来计算与AKNS系统相关的散射和反散射变异。 拟议的数字前散射变异计算出AKNS系统在整个实际轴上的解决方案,从而通过解决单一线性系统在一个点上计算反射系数。 拟议的数字反散射变换利用了对螺旋管操作员合理功能方法的新改进,使某些Riemann-Hilbert问题能够在不发生等离子畸形的情况下得到有效解决。 后一种发展使得能够获得高精度计算, 这一点在单维Schr\"oder"操作员的反散变中得到了证明, 它具有$mathrm{sech}2$潜力的单维Schr\"oder运算器操作员的反向散射变中得到了证明。