The common spatial pattern (CSP) approach is known as one of the most popular spatial filtering techniques for EEG classification in motor imagery (MI) based brain-computer interfaces (BCIs). However, it still suffers some drawbacks such as sensitivity to noise, non-stationarity, and limitation to binary classification.Therefore, we propose a novel spatial filtering framework called scaCSP based on the scatter matrices of spatial covariances of EEG signals, which works generally in both binary and multi-class problems whereas CSP can be cast into our framework as a special case when only the range space of the between-class scatter matrix is used in binary cases.We further propose subspace enhanced scaCSP algorithms which easily permit incorporating more discriminative information contained in other range spaces and null spaces of the between-class and within-class scatter matrices in two scenarios: a nullspace components reduction scenario and an additional spatial filter learning scenario.The proposed algorithms are evaluated on two data sets including 4 MI tasks. The classification performance is compared against state-of-the-art competing algorithms: CSP, Tikhonov regularized CSP (TRCSP), stationary CSP (sCSP) and stationary TRCSP (sTRCSP) in the binary problems whilst multi-class extensions of CSP based on pair-wise and one-versus-rest techniques in the multi-class problems. The results show that the proposed framework outperforms all the competing algorithms in terms of average classification accuracy and computational efficiency in both binary and multi-class problems.The proposed scsCSP works as a unified framework for general multi-class problems and is promising for improving the performance of MI-BCIs.


翻译:通用空间模式(CSP)方法被称为机动图像(MI)基于大脑-计算机界面(BCIS)中最受欢迎的EEEG分类空间过滤技术之一。然而,它仍然有一些缺点,例如对噪音的敏感度、非静态性和对二进制分类的限制。 因此,我们提议基于空间共变信号分布矩阵的ScaCSP新颖的空间过滤框架,它一般在二进制和多级之间起作用,而CSP则可以作为特例纳入我们的框架中。 我们进一步提议子空间增强的SCSP算法可以很容易地将其他范围空间空间空间、非静态和对二进制分类的空格分布矩阵包含更多的歧视性信息。 无效空间构件减少假设和额外的空间过滤学习假。 拟议的算法在两种数据组合中,包括4个MI任务。 将分类的性能与每组的竞争性算法进行比较:CSP、 Tikhonov Exlicalalalal-silable 以及 CSAL-Sal-Sal-Sal-Sal-Sal-Sal-Serviolal Serviews 和C Scial-Scial-Scial-Sal-Smarlupal-S-Smarlal-S-S-Smarl)中, C 和C的S-S-SP-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-Slal-SL-S-SL-SL-SLisal-S-S-SL-S-S-S-S-S-S-S-SL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SL-SL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
50+阅读 · 2020年12月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年4月28日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员