We consider general systems of ordinary differential equations with monotonic Gibbs entropy, and introduce an entropic scheme that simply imposes an entropy fix after every time step of any existing time integrator. It is proved that in the general case, our entropy fix has only infinitesimal influence on the numerical order of the original scheme, and in many circumstances, it can be shown that the scheme does not affect the numerical order. Numerical experiments on the linear Fokker-Planck equation and nonlinear Boltzmann equation are carried out to support our numerical analysis.
翻译:我们考虑的是普通差异方程式的通用系统,其中含有单调的Gibbs entropy, 并引入了一种昆虫方案, 仅仅在任何现有时间整合器的每一个步骤的每一个步骤之后都实施一种酶固定法。 事实证明,在一般情况下,我们的酶固定法对原计划的数字顺序只有极小的影响, 在许多情况下, 可以证明这个方案并不影响数字顺序。 在线性福克-普朗克方程式和非线性博尔茨曼方程式上进行了数值实验,以支持我们的数字分析。