Variational Quantum Algorithms (VQAs) are a promising approach for practical applications like chemistry and materials science on near-term quantum computers as they typically reduce quantum resource requirements. However, in order to implement VQAs, an efficient classical optimization strategy is required. Here we present a new stochastic gradient descent method using an adaptive number of shots at each step, called the global Coupled Adaptive Number of Shots (gCANS) method, which improves on prior art in both the number of iterations as well as the number of shots required. These improvements reduce both the time and money required to run VQAs on current cloud platforms. We analytically prove that in a convex setting gCANS achieves geometric convergence to the optimum. Further, we numerically investigate the performance of gCANS on some chemical configuration problems. We also consider finding the ground state for an Ising model with different numbers of spins to examine the scaling of the method. We find that for these problems, gCANS compares favorably to all of the other optimizers we consider.
翻译:在近期量子计算机上,化学和材料科学通常会减少量子资源需求,因此对化学和材料科学等实际应用来说,变化量子算法(VQAs)是一种很有希望的方法。然而,为了实施VQAs,需要一种高效的经典优化战略。在这里,我们展示了一种新的随机梯度梯度下降法,使用每步可调的射击次数,称为全球双倍调整射击次数(gcANS)法,这种方法在迭代次数和所需射击次数方面都比以往的先进技术有所改进。这些改进减少了运行当前云层平台上的VQA所需的时间和资金。我们分析证明,在对等式环境中,gcANS能够实现与最佳的几何趋一致。此外,我们还从数字上调查了GCANS在某些化学配置问题上的性能。我们还考虑找到具有不同数量旋转的Ising模型的地面状态。我们发现,对于这些问题来说,GCANS的地面状态优于我们所考虑的其他优化者。