项目名称: Ge-MOS技术中镧系复合高k介质与GeO2/Ge界面调控的研究

项目编号: No.61204103

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 王盛凯

作者单位: 中国科学院微电子研究所

项目金额: 31万元

中文摘要: 锗材料因其突出的空穴和电子迁移率,被认为是后22纳米技术代取代Si做MOSFET沟道材料的主要候选之一。然而长期以来Ge表面难于获得高质量的栅介质及低缺陷密度的界面是困扰其发展的核心问题。研究表明,这些难题有望通过复合高k介质和有效的界面调控获得解决。本项目拟选用镧系复合高k介质结合GeO2/Ge界面结构,在介质生长动力学、复合介质热力学稳定性计算、等离子体氧化动力学、GeO2/Ge界面反应等方面开展工作,围绕高k栅介质漏电流与其内部缺陷形成的物理关系以及GeO2/Ge界面反应微观机理两大科学问题进行研究。通过组分调整、结构设计、热力学计算等方法结合工艺优化,实现高质量、热稳定的高k介质;另一方面通过等离子体氧化、界面缺陷及微观结构表征、等方法结合热力学调控,实现低缺陷密度的界面。为Ge-MOS技术中所遇到的缺乏热稳定的栅介质、界面态密度过大、理论支撑不足等科学问题提供技术和理论解决方案。

中文关键词: 锗MOS;高k介质;氧化锗;界面态;臭氧氧化

英文摘要: Germanium is a promising candidate to replace silicon as the channel material of MOSFET in the post-22 nm node because of its high mobility. However, lacking of high-quality gate dielectric and defectless interface are important problems that hamper its development. Recent studies suggest that these problems may be solved by applying composite high-k dielectric and interfacial control. By focusing on the following two scientific issues, that are (i) the physical relationship between the high-k gate dielectric leakage current and the defects formation within the gate dielectric and (ii) GeO2/Ge interfacial reaction mechanism, we plan to employ lanthanum-based composite high-k dielectric together with GeO2/Ge interface structure to carry out this study through investigating the following aspects including dielectric growth kinetics, composite dielectric thermodynamic calculation, plasma oxidation kinetics, GeO2/Ge interfacial reaction and so on. On the one hand, we plan to realize the high-k dielectric for Ge with high quality and good thermal stability by changing its composition, designing its structure and thermodynamic calculation. On the other hand, in order to obtain an interface with low defects density, this project would applying plasma oxidation, interfacial defects characterization, structure characte

英文关键词: Ge-MOS;high-k dielectric;germanium oxide;interface trap density;ozone oxidation

成为VIP会员查看完整内容
0

相关内容

【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
212+阅读 · 2021年8月2日
专知会员服务
124+阅读 · 2021年6月12日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
140+阅读 · 2021年3月13日
专知会员服务
43+阅读 · 2020年12月8日
【2020新书】机器学习在能源行业中的应用,315页pdf
专知会员服务
122+阅读 · 2020年11月3日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
年底了,你年初立下的 flag 实现了吗?
ZEALER订阅号
0+阅读 · 2021年12月31日
Flutter 之美 | 开发者说·DTalk
谷歌开发者
1+阅读 · 2021年12月23日
【博士论文】分形计算系统
专知
2+阅读 · 2021年12月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月28日
Arxiv
1+阅读 · 2022年4月28日
Arxiv
0+阅读 · 2022年4月28日
小贴士
相关VIP内容
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
212+阅读 · 2021年8月2日
专知会员服务
124+阅读 · 2021年6月12日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
140+阅读 · 2021年3月13日
专知会员服务
43+阅读 · 2020年12月8日
【2020新书】机器学习在能源行业中的应用,315页pdf
专知会员服务
122+阅读 · 2020年11月3日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
年底了,你年初立下的 flag 实现了吗?
ZEALER订阅号
0+阅读 · 2021年12月31日
Flutter 之美 | 开发者说·DTalk
谷歌开发者
1+阅读 · 2021年12月23日
【博士论文】分形计算系统
专知
2+阅读 · 2021年12月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员