We propose nonparametric Bayesian estimators for causal inference exploiting Regression Discontinuity/Kink (RD/RK) under sharp and fuzzy designs. Our estimators are based on Gaussian Process (GP) regression and classification. The GP methods are powerful probabilistic modeling approaches that are advantageous in terms of derivative estimation and uncertainty qualification, facilitating RK estimation and inference of RD/RK models. These estimators are extended to hierarchical GP models with an intermediate Bayesian neural network layer and can be characterized as hybrid deep learning models. Monte Carlo simulations show that our estimators perform similarly and often better than competing estimators in terms of precision, coverage and interval length. The hierarchical GP models improve upon one-layer GP models substantially. An empirical application of the proposed estimators is provided.


翻译:我们建议采用非对称的贝耶斯测算器,用于在尖锐和模糊的设计下利用回退性失常/Kink(RD/RK)进行因果推算,我们的测算器以高山进程回归和分类为基础,GP方法具有强大的概率模型方法,在衍生物估计和不确定性资格方面是有利的,有利于RD/RK模型的RK估计和推断。这些测算器扩大到具有中贝耶斯神经网络层的等级GP模型,可定性为混合深度学习模型。蒙特卡洛模拟显示,我们的测算器在精确度、覆盖范围和间隔长度方面与相竞的估测器类似,而且往往比相近。等级GP模型大大改进了一层GP模型。提供了拟议的测算器的经验应用。

0
下载
关闭预览

相关内容

【CHI2021】可解释人工智能导论
专知会员服务
120+阅读 · 2021年5月25日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员