We study the problem of finding efficient sampling policies in an edge-based feedback system, where sensor samples are offloaded to a back-end server that processes them and generates feedback to a user. Sampling the system at maximum frequency results in the detection of events of interest with minimum delay but incurs higher energy costs due to the communication and processing of redundant samples. On the other hand, lower sampling frequency results in higher delay in detecting the event, thus increasing the idle energy usage and degrading the quality of experience. We quantify this trade-off as a weighted function between the number of samples and the sampling interval. We solve the minimisation problem for exponential and Rayleigh distributions, for the random time to the event of interest. We prove the convexity of the objective functions by using novel techniques, which can be of independent interest elsewhere. We argue that adding an initial offset to the periodic sampling can further reduce the energy consumption and jointly compute the optimum offset and sampling interval. We apply our framework to two practically relevant applications and show energy savings of up to 36% when compared to an existing periodic scheme.
翻译:我们研究在边缘反馈系统中找到高效抽样政策的问题,在这种系统中,传感器样品被卸到一个后端服务器上,处理它们并向用户提供反馈。在最大频度取样后,就能够以最小的延迟程度探测到感兴趣的事件,但由于多余样品的通信和处理而导致能源成本较高。另一方面,低取样频率导致在发现事件方面出现更高的延迟,从而增加闲置能源的使用,并降低经验的质量。我们用数量表示这种权衡作为样品数量和取样间隔之间的加权函数。我们解决指数式和雷利格分配的最小化问题,以便随机处理感兴趣的事件。我们通过使用新技术来证明客观功能的共性,而在其他地方则可能具有独立的兴趣。我们说,在定期取样中增加初步的抵消部分可以进一步减少能源消耗,并共同计算最佳的抵消和取样间隔。我们将我们的框架应用于两个实际相关的应用,并显示与现行定期计划相比,节能率高达36%。