We analyze when an arbitrary matrix pencil is equivalent to a dissipative Hamiltonian pencil and show that this heavily restricts the spectral properties. In order to relax the spectral properties, we introduce matrix pencils with coefficients that have positive semidefinite Hermitian parts. We will make a detailed analysis of their spectral properties and their numerical range. In particular, we relate the Kronecker structure of these pencils to that of an underlying skew-Hermitian pencil and discuss their regularity, index, numerical range, and location of eigenvalues. Further, we study matrix polynomials with positive semidefinite Hermitian coefficients and use linearizations with positive semidefinite Hermitian parts to derive sufficient conditions for a spectrum in the left half plane and derive bounds on the index.


翻译:我们分析任意的矩阵铅笔相当于一种散射的汉密尔顿铅笔,并表明这严重限制了光谱特性。为了放松光谱特性,我们将采用带有正半无限制的埃米提亚部分的系数的矩阵铅笔。我们将详细分析其光谱特性和数值范围。特别是,我们将这些铅笔的克罗内克结构与底部的斯凯夫-赫米提亚铅笔的结构联系起来,并讨论其规律性、指数、数字范围以及精密值的位置。此外,我们用正半无限制的赫米提亚系数进行矩阵多尼米尔系数研究,并使用正半无限制赫米提亚部分的线性化,以便为左半平面的频谱创造充分的条件,并在指数上划定界限。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月11日
Arxiv
0+阅读 · 2021年10月11日
Arxiv
0+阅读 · 2021年10月6日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员