The large-sample behavior of non-degenerate multivariate $U$-statistics of arbitrary degree is investigated under the assumption that their kernel depends on parameters that can be estimated consistently. Mild regularity conditions are given which guarantee that once properly normalized, such statistics are asymptotically multivariate Gaussian both under the null hypothesis and sequences of local alternatives. The work of Randles (1982, Ann. Statist.) is extended in three ways: the data and the kernel values can be multivariate rather than univariate, the limiting behavior under local alternatives is studied for the first time, and the effect of knowing some of the nuisance parameters is quantified. These results can be applied to a broad range of goodness-of-fit testing contexts, as shown in one specific example.
翻译:暂无翻译