Although ubiquitous in the sciences, histogram data have not received much attention by the Deep Learning community. Whilst regression and classification tasks for scalar and vector data are routinely solved by neural networks, a principled approach for estimating histogram labels as a function of an input vector or image is lacking in the literature. We present a dedicated method for Deep Learning-based histogram regression, which incorporates cross-bin information and yields distributions over possible histograms, expressed by $\tau$-quantiles of the cumulative histogram in each bin. The crux of our approach is a new loss function obtained by applying the pinball loss to the cumulative histogram, which for 1D histograms reduces to the Earth Mover's distance (EMD) in the special case of the median ($\tau = 0.5$), and generalizes it to arbitrary quantiles. We validate our method with an illustrative toy example, a football-related task, and an astrophysical computer vision problem. We show that with our loss function, the accuracy of the predicted median histograms is very similar to the standard EMD case (and higher than for per-bin loss functions such as cross-entropy), while the predictions become much more informative at almost no additional computational cost.


翻译:虽然在科学领域普遍存在,但深层学习界对直方图数据没有多少注意。 虽然神经网络经常解决卡路里和矢量数据的回归和分类任务,但文献中缺乏估算直方图标签作为输入矢量或图像函数的原则性方法。 我们提出了一个基于深层学习的直方图回归专门方法,该方法包含跨文献资料和可能直方图的产值分布,以每进书中累积直方图的等值表示。 我们的方法的重心是通过将弹丸损失应用到累积直方图获得的新损失函数,1D直方图在中位($\tau=0.5美元)的特殊情况下将直方图标签降低到地球移动器距离(EMD),并笼统地将其分为任意立方图。 我们用一个示例、一个与足球有关的任务和一个天体物理计算机视觉问题来验证我们的方法。 我们显示,随着我们的损失功能的提高,将预测的中位直方图的准确性值降低到每平方图的计算成本,而每平方图的计算法则几乎不比标准的计算成本。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Logistic回归第二弹——Softmax Regression
机器学习深度学习实战原创交流
9+阅读 · 2015年10月29日
Asymmetric Loss For Multi-Label Classification
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月28日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Logistic回归第二弹——Softmax Regression
机器学习深度学习实战原创交流
9+阅读 · 2015年10月29日
Top
微信扫码咨询专知VIP会员