We propose a framework for estimation and inference when the model may be misspecified. We rely on a local asymptotic approach where the degree of misspecification is indexed by the sample size. We construct estimators whose mean squared error is minimax in a neighborhood of the reference model, based on simple one-step adjustments. In addition, we provide confidence intervals that contain the true parameter under local misspecification. As a tool to interpret the degree of misspecification, we map it to the local power of a specification test of the reference model. Our approach allows for systematic sensitivity analysis when the parameter of interest may be partially or irregularly identified. As illustrations, we study three applications: an empirical analysis of the impact of conditional cash transfers in Mexico where misspecification stems from the presence of stigma effects of the program, a cross-sectional binary choice model where the error distribution is misspecified, and a dynamic panel data binary choice model where the number of time periods is small and the distribution of individual effects is misspecified.
翻译:我们建议一个模型可能被错误描述时的估计和推断框架。 我们依靠一种局部的零用药方法, 其误差程度按样本大小进行索引。 我们根据简单的一步调整, 构建参考模型附近地区中平均正方差为微形的估测器。 此外, 我们提供包含本地误差下真实参数的互信间隔。 作为解释误差程度的工具, 我们将其映射为参考模型规格测试的当地力量。 我们的方法允许在可能部分或全部地确定相关参数时进行系统敏感性分析。 作为示例, 我们研究三种应用: 墨西哥有条件现金转移转移的影响的经验分析, 其误差因方案存在污名效应而导致; 跨部门的二进制选择模型, 其中错误分布有误描述; 动态的小组数据二进制选择模型, 其中时间段小, 个别影响分布有误描述。