Automatic question answering is an important yet challenging task in E-commerce given the millions of questions posted by users about the product that they are interested in purchasing. Hence, there is a great demand for automatic answer generation systems that provide quick responses using related information about the product. There are three sources of knowledge available for answering a user posted query, they are reviews, duplicate or similar questions, and specifications. Effectively utilizing these information sources will greatly aid us in answering complex questions. However, there are two main challenges present in exploiting these sources: (i) The presence of irrelevant information and (ii) the presence of ambiguity of sentiment present in reviews and similar questions. Through this work we propose a novel pipeline (MSQAP) that utilizes the rich information present in the aforementioned sources by separately performing relevancy and ambiguity prediction before generating a response. Experimental results show that our relevancy prediction model (BERT-QA) outperforms all other variants and has an improvement of 12.36% in F1 score compared to the BERT-base baseline. Our generation model (T5-QA) outperforms the baselines in all content preservation metrics such as BLEU, ROUGE and has an average improvement of 35.02% in ROUGE and 198.75% in BLEU compared to the highest performing baseline (HSSC-q). Human evaluation of our pipeline shows us that our method has an overall improvement in accuracy of 30.7% over the generation model (T5-QA), resulting in our full pipeline-based approach (MSQAP) providing more accurate answers. To the best of our knowledge, this is the first work in the e-commerce domain that automatically generates natural language answers combining the information present in diverse sources such as specifications, similar questions, and reviews data.


翻译:自动解答是电子商务中一项重要但具有挑战性的任务,因为用户就他们有兴趣购买的产品提出了数以百万计的问题。因此,对自动解答生成系统的需求很大,这些系统利用有关产品的信息提供快速反应。有三种知识来源可以用来回答用户张贴的询问,它们是审查、重复或类似的问题和规格。有效利用这些信息来源将大大有助于我们回答复杂的问题。然而,在利用这些来源方面存在着两个主要挑战:(一) 存在不相关的信息,以及(二) 在审查及类似问题中存在着含混不清的情绪。因此,我们提议建立一个新的管道(MSQAP),利用上述来源的丰富信息,在生成回复之前分别进行高端和模糊的预测。实验结果显示,我们的升级预测模型(BERT-QA)比所有其他变异模型的得分提高了12.36%。我们的新一代模型(T5-QA)比所有内容保存基准(MSQ)要超越了所有内容保存基准(MSQ),因此,在“BEU-O-O-L ” 数据源中,将比为“O-L-L” 数据平均数据,在“BGE-L-L”中,在“30”中将数据中,在“O-L-L-L-L-L-L-L-L”数据库中,在“数据中,在“O-L-L-S-L-L-L-L-L-L-L-L-L-S-L-L-L-L-S-S-L-S-S-S-L-L-L-L-S-L-L-L-L-L-L-L-L-L-L-L-L-S-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
CoQA: A Conversational Question Answering Challenge
Arxiv
7+阅读 · 2018年8月21日
VIP会员
Top
微信扫码咨询专知VIP会员