We propose a deep switching state space model (DS$^3$M) for efficient inference and forecasting of nonlinear time series with irregularly switching among various regimes. The switching among regimes is captured by both discrete and continuous latent variables with recurrent neural networks. The model is estimated with variational inference using a reparameterization trick. We test the approach on a variety of simulated and real datasets. In all cases, DS$^3$M achieves competitive performance compared to several state-of-the-art methods (e.g. GRU, SRNN, DSARF, SNLDS), with superior forecasting accuracy, convincing interpretability of the discrete latent variables, and powerful representation of the continuous latent variables for different kinds of time series. Specifically, the MAPE values increase by 0.09\% to 15.71\% against the second-best performing alternative models.
翻译:我们建议采用一个深开式状态空间模型(DS$3$M),以便有效推断和预测非线性时间序列,在不同制度之间不规则地转换。各制度之间的转换由经常神经网络的离散和连续潜在变数所捕捉。该模型使用一个重新校正法的变异推法估计。我们测试了各种模拟和真实数据集的方法。在所有情况下,DS$3$M都取得了与若干最先进的方法(例如GRU、SRNN、DSARF、SNLDS)相比的竞争性性能,预测精确性更高,离散潜在变数的可令人信服的解释性,以及不同时间序列中连续潜在变数的有力表现。具体地说,MAPE值比第二最佳的替代模型增加了0.09 ⁇ 至15.71 ⁇ 。