We study optimization problems where the objective function is modeled through feedforward neural networks with rectified linear unit (ReLU) activation. Recent literature has explored the use of a single neural network to model either uncertain or complex elements within an objective function. However, it is well known that ensembles of neural networks produce more stable predictions and have better generalizability than models with single neural networks, which suggests the application of ensembles of neural networks in a decision-making pipeline. We study how to incorporate a neural network ensemble as the objective function of an optimization model and explore computational approaches for the ensuing problem. We present a mixed-integer linear program based on existing popular big-$M$ formulations for optimizing over a single neural network. We develop two acceleration techniques for our model, the first one is a preprocessing procedure to tighten bounds for critical neurons in the neural network while the second one is a set of valid inequalities based on Benders decomposition. Experimental evaluations of our solution methods are conducted on one global optimization problem and two real-world data sets; the results suggest that our optimization algorithm outperforms the adaption of an state-of-the-art approach in terms of computational time and optimality gaps.
翻译:我们研究的是,在目标功能模式上,通过调整线性单元(ReLU)激活的饲料向前神经网络进行模拟的优化问题;最近的一些文献探索了使用单一神经网络在客观功能中模拟不确定或复杂的元素;然而,众所周知,神经网络的集合产生更稳定的预测,比单一神经网络的模型更加普遍,这表明在决策管道中应用神经网络的集合;我们研究如何将神经网络集合作为优化模型的客观功能,并探索随之产生的问题的计算方法;我们根据现有的流行的大-M$配方,提出了一个混合整数线性方案,以优化单一神经网络;我们为模型开发了两种加速技术,第一种是收紧神经网络关键神经的预处理程序,而第二种是一套基于Benders变异状态的有效不平等。我们解决方案方法的实验性评价是针对一个全球优化问题和两个真实世界数据集进行的;我们提出一个混合整数线性方案,以现有流行的大-M$配方为基础,以优化单一神经网络的配方;我们为模型开发了两种加速技术,第一种预处理程序是为了收紧固神经网络中的关键神经网络的界限,而第二个是一套基于Benders变异状态的有效不平等。我们解决方案方法的实验性评估了一种全球优化方法的模型的计算方法的模型的模型的计算结果。