Representational sparsity is known to affect robustness to input perturbations in deep neural networks (DNNs), but less is known about how the semantic content of representations affects robustness. Class selectivity-the variability of a unit's responses across data classes or dimensions-is one way of quantifying the sparsity of semantic representations. Given recent evidence that class selectivity may not be necessary for, and can even impair generalization, we investigated whether it also confers robustness (or vulnerability) to perturbations of input data. We found that class selectivity leads to increased vulnerability to average-case (naturalistic) perturbations in ResNet18 and ResNet20, as measured using Tiny ImageNetC and CIFAR10C, respectively. Networks regularized to have lower levels of class selectivity are more robust to average-case perturbations, while networks with higher class selectivity are more vulnerable. In contrast, we found that class selectivity increases robustness to worst-case (i.e. white box adversarial) perturbations, suggesting that while decreasing class selectivity is helpful for average-case robustness, it is harmful for worst-case robustness. To explain this difference, we studied the dimensionality of the networks' representations: we found that the dimensionality of early-layer representations is inversely proportional to a network's class selectivity, and that adversarial samples cause a larger increase in early-layer dimensionality than corrupted samples. We also found that the input-unit gradient was more variable across samples and units in high-selectivity networks compared to low-selectivity networks. These results lead to the conclusion that units participate more consistently in low-selectivity regimes compared to high-selectivity regimes, effectively creating a larger attack surface and hence vulnerability to worst-case perturbations.


翻译:代表度偏大已知会影响深度神经网络( DNNs) 输入扭曲的稳健性( 或易感性), 但对于表达方式的语义内容如何影响稳健性, 却知之甚少。 分类单位反应在数据类别或维度之间的差异性是量化语义表达的广度的一种方式。 最近有证据表明, 等级选择性对于输入数据的扭曲可能没有必要, 甚至可能损害一般化。 鉴于最近有证据表明, 等级选择性可能并不必要, 并且甚至可能损害一般化, 我们调查了是否还赋予了更强( 或脆弱性) 对输入数据的扭曲性数据。 我们发现, 等级选择性的强度( 白箱相对性) 扭曲性导致更弱的 ResNet18 和 ResNet20 中的平均( 自然性) 扰动性( 自然性) 影响稳健性 。 分别使用 Tiniy 图像网络 和 CIFAR10C 衡量的单位反应变化性变化性变化性更强性 。 常规化网络对于普通化程度而言, 我们发现, 最强性 最强的反映最强性 最强性 最强性 最强性 最强性 最强性 最强性 。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【SIGIR2020-微软】知识图谱上的增强推荐推理
专知会员服务
74+阅读 · 2020年5月30日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2020年12月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员