In this paper, the numerical approximation of the generalized Burgers'-Huxley equation (GBHE) with weakly singular kernels using non-conforming methods will be presented. Specifically, we discuss two new formulations. The first formulation is based on the non-conforming finite element method (NCFEM). The other formulation is based on discontinuous Galerkin finite element methods (DGFEM). The wellposedness results for both formulations are proved. Then, a priori error estimates for both the semi-discrete and fully-discrete schemes are derived. Specific numerical examples, including some applications for the GBHE with weakly singular model, are discussed to validate the theoretical results.
翻译:暂无翻译