In this paper, we present results of an auditing study performed over YouTube aimed at investigating how fast a user can get into a misinformation filter bubble, but also what it takes to "burst the bubble", i.e., revert the bubble enclosure. We employ a sock puppet audit methodology, in which pre-programmed agents (acting as YouTube users) delve into misinformation filter bubbles by watching misinformation promoting content. Then they try to burst the bubbles and reach more balanced recommendations by watching misinformation debunking content. We record search results, home page results, and recommendations for the watched videos. Overall, we recorded 17,405 unique videos, out of which we manually annotated 2,914 for the presence of misinformation. The labeled data was used to train a machine learning model classifying videos into three classes (promoting, debunking, neutral) with the accuracy of 0.82. We use the trained model to classify the remaining videos that would not be feasible to annotate manually. Using both the manually and automatically annotated data, we observe the misinformation bubble dynamics for a range of audited topics. Our key finding is that even though filter bubbles do not appear in some situations, when they do, it is possible to burst them by watching misinformation debunking content (albeit it manifests differently from topic to topic). We also observe a sudden decrease of misinformation filter bubble effect when misinformation debunking videos are watched after misinformation promoting videos, suggesting a strong contextuality of recommendations. Finally, when comparing our results with a previous similar study, we do not observe significant improvements in the overall quantity of recommended misinformation content.


翻译:在本文中,我们展示了在YouTube上进行的审计研究的结果,目的是调查用户进入错误信息过滤泡泡的速度,但也展示了调查用户进入错误信息过滤泡泡的速度,以及为了“爆破泡泡”需要多少时间,即恢复泡沫圈。我们采用了袜子傀儡审计方法,将预编代理人(作为YouTube用户)通过观看错误信息宣传内容进入错误信息过滤泡泡。然后,他们试图通过观看错误信息披露内容来打破泡沫并达成更平衡的建议。我们记录了搜索结果、主页结果和被监视视频的建议。总的来说,我们记录了17 405个独特的视频,其中我们为出现错误信息手动了2 914个。我们使用标签数据来训练机器学习模型,将视频分为三个类别(作为YouTube用户),事先编程代理人(作为YouTube用户)通过观看错误信息过滤信息过滤器进入错误的泡泡泡泡泡泡泡泡泡泡泡泡泡。我们用手动手动的方式对其余的视频进行了记录。我们用手动和自动加注的数据,我们观察一系列被审计专题的错误泡泡泡泡动的动态动态,我们观察了一系列的图像。我们的关键发现,即使过滤的图像也比较了类似内容,但过滤视频的底底版的图像也显示了结果,但我们还是会观察了方向性地观察了方向,在某个专题上显示了一种反方向,当我们反复地展示了。

0
下载
关闭预览

相关内容

YouTube 是一个视频分享网站,2006 年被 Google 收购。 youtube.com
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年11月30日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员