In today's world, abundant digital content like e-books, movies, videos and articles are available for consumption. It is daunting to review everything accessible and decide what to watch next. Consequently, digital media providers want to capitalise on this confusion and tackle it to increase user engagement, eventually leading to higher revenues. Content providers often utilise recommendation systems as an efficacious approach for combating such information overload. This paper concentrates on developing a synthetic approach for recommending movies. Traditionally, movie recommendation systems use either collaborative filtering, which utilises user interaction with the media, or content-based filtering, which makes use of the movie's available metadata. Technological advancements have also introduced a hybrid technique that integrates both systems. However, our approach deals solely with content-based recommendations, further enhancing it with a ranking algorithm based on content similarity metrics. The three metrics contributing to the ranking are similarity in metadata, visual content, and user reviews of the movies. We use text vectorization followed by cosine similarity for metadata, feature extraction by a pre-trained VGG19 followed by K-means clustering for visual content, and a comparison of sentiments for user reviews. Such a system allows viewers to know movies that "feel" the same.
翻译:在当今世界,大量数字内容,如电子书籍、电影、视频和文章可供消费。审查所有可获取的东西和决定下一步看什么是令人生畏的。因此,数字媒体供应商希望利用这一混乱,解决这一混乱,增加用户参与,最终导致收入增加。内容提供者经常使用建议系统,作为对付这种信息超负荷的有效方法。本文集中研究如何开发一种综合方法来建议电影。传统上,电影推荐系统使用协作过滤,即利用用户与媒体的互动,或基于内容的过滤,从而利用电影现有的元数据。技术进步还引入了一种混合技术,将两种系统结合起来。然而,我们的方法仅涉及基于内容的建议,通过基于内容相似的衡量尺度的排序来进一步加强它。有助于排名的三种衡量尺度在元数据、视觉内容和用户对电影的审查方面是相似的。我们使用文本矢量方法,随后对元数据进行类似处理,由预先培训的VGG19进行特征提取,然后采用K手段组合内容,对用户的感知力加以比较。这种系统允许查看“同样的观点”。