In cooperative localization, communicating mobile agents use inter-agent relative measurements to improve their dead-reckoning-based global localization. Measurement scheduling enables an agent to decide which subset of available inter-agent relative measurements it should process when its computational resources are limited. Optimal measurement scheduling is an NP-hard combinatorial optimization problem. The so-called sequential greedy (SG) algorithm is a popular suboptimal polynomial-time solution for this problem. However, the merit function evaluation for the SG algorithms requires access to the state estimate vector and error covariance matrix of all the landmark agents (teammates that an agent can take measurements from). This paper proposes a measurement scheduling for CL that follows the SG approach but reduces the communication and computation cost by using a neural network-based surrogate model as a proxy for the SG algorithm's merit function. The significance of this model is that it is driven by local information and only a scalar metadata from the landmark agents. This solution addresses the time and memory complexity issues of running the SG algorithm in three ways: (a) reducing the inter-agent communication message size, (b) decreasing the complexity of function evaluations by using a simpler surrogate (proxy) function, (c) reducing the required memory size.Simulations demonstrate our results.


翻译:在合作本地化中,交流移动代理器使用跨代理器的相对测量方法来改进它们以死回击为基础的全球本地化。测量时间安排使代理商能够在计算资源有限时决定它应该处理哪些组现有的跨代理相对测量方法。 最佳测量时间安排是一个NP硬组合优化问题。 所谓的连续贪婪算法是解决这一问题的流行的亚最佳多元时间解决方案。 但是,SG算法的量子功能评价需要访问所有里程碑剂(一个代理商可以从测量的食宿量)的国家估计矢量和误差共变矩阵。 本文建议为CL提出一个测量时间安排,该时间安排遵循SG方法,但通过使用基于神经网络的代用模型作为SG算法的优点功能的代用来减少通信成本和计算成本。 这个模式的意义在于它是由当地信息驱动的,而只是来自里程碑代理商的缩略数据。 这个解决方案解决了以三种方式运行SG算法的时间和记忆复杂性问题:(a) 减少机构间通信功能的缩缩缩缩缩缩缩缩缩缩缩缩缩缩(Simpreximal) 功能(通过缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩的缩缩缩缩) 。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员