Neuromorphic vision sensors (NVS) can enable energy savings due to their event-driven that exploits the temporal redundancy in video streams from a stationary camera. However, noise-driven events lead to the false triggering of the object recognition processor. Image denoise operations require memoryintensive processing leading to a bottleneck in energy and latency. In this paper, we present in-memory filtering (IMF), a 6TSRAM in-memory computing based image denoising for eventbased binary image (EBBI) frame from an NVS. We propose a non-overlap median filter (NOMF) for image denoising. An inmemory computing framework enables hardware implementation of NOMF leveraging the inherent read disturb phenomenon of 6T-SRAM. To demonstrate the energy-saving and effectiveness of the algorithm, we fabricated the proposed architecture in a 65nm CMOS process. As compared to fully digital implementation, IMF enables > 70x energy savings and a > 3x improvement of processing time when tested with the video recordings from a DAVIS sensor and achieves a peak throughput of 134.4 GOPS. Furthermore, the peak energy efficiencies of the NOMF is 51.3 TOPS/W, comparable with state of the art inmemory processors. We also show that the accuracy of the images obtained by NOMF provide comparable accuracy in tracking and classification applications when compared with images obtained by conventional median filtering.
翻译:静态视觉传感器(NVS)能够节省能源,因为其事件驱动利用固定相机的视频流中的超时冗余,但噪音驱动事件导致错误地触发物体识别处理器。图像隐性操作需要记忆密集处理,导致能量和悬浮的瓶颈。在本文中,我们展示了模拟过滤(IMF),6TSRAM 模拟基于计算机的图像,从一个 NVS 框架中去除事件二进制图像(EBBI),因此可以节省能源。我们提议为图像降色提供一个不过度的中位过滤器(NOMF ) 。一个隐性计算框架使NOMF能够利用6T-SRAM的固有阅读扰动现象实施硬件操作。为了展示算法的节能和有效性,我们将拟议的架构建成一个65nm CMOS 进程。 与完全数字化的实施相比,IMF能够使超过70x节能节约量,并在用DVIS传感器的视频记录测试后改进了处理时间 > 3x。一个NOMF的顶峰,在134.GMOS的常规图像跟踪中,我们提供了可比较的NO4.MIS的能源效率。