We consider perception-based control using state estimates that are obtained from high-dimensional sensor measurements via learning-enabled perception maps. However, these perception maps are not perfect and result in state estimation errors that can lead to unsafe system behavior. Stochastic sensor noise can make matters worse and result in estimation errors that follow unknown distributions. We propose a perception-based control framework that i) quantifies estimation uncertainty of perception maps, and ii) integrates these uncertainty representations into the control design. To do so, we use conformal prediction to compute valid state estimation regions, which are sets that contain the unknown state with high probability. We then devise a sampled-data controller for continuous-time systems based on the notion of measurement robust control barrier functions. Our controller uses idea from self-triggered control and enables us to avoid using stochastic calculus. Our framework is agnostic to the choice of the perception map, independent of the noise distribution, and to the best of our knowledge the first to provide probabilistic safety guarantees in such a setting. We demonstrate the effectiveness of our proposed perception-based controller for a LiDAR-enabled F1/10th car.
翻译:我们考虑使用学习-enabled感知图所得到的状态估计进行感知为基础的控制。然而,这些感知图并不完美,并且可能会导致状态估计误差,从而导致不安全的系统行为。随机传感器噪声可能会使情况变得更糟,并导致按照未知分布的估计误差。我们提出了一种感知为基础的控制框架,其 i)量化感知图的估计不确定性,并 ii)将这些不确定性表示集成到控制设计中,为此我们使用共轭预测来计算有效的状态估计区域,这些区域是包含未知状态的集合,并具有高概率。我们然后为连续系统设计了一种基于测量鲁棒控制屏障函数的采样数据控制器。我们的控制器使用自触发控制的思想并使我们能够避免使用随机演算法。我们的框架不关心感知地图的选择,与噪声分布无关,并且在这样的设置中提供概率安全保障,据我们所知,这是首次。我们演示了我们提出的基于感知图的控制器对LiDAR-enabled F1/10th赛车的有效性。