Rapid developments of quantum information technology show promising opportunities for simulating quantum field theory in near-term quantum devices. In this work, we formulate the theory of (time-dependent) variational quantum simulation, explicitly designed for quantum simulation of quantum field theory. We develop hybrid quantum-classical algorithms for crucial ingredients in particle scattering experiments, including encoding, state preparation, and time evolution, with several numerical simulations to demonstrate our algorithms in the 1+1 dimensional $\lambda \phi^4$ quantum field theory. These algorithms could be understood as near-term analogs of the Jordan-Lee-Preskill algorithm, the basic algorithm for simulating quantum field theory using universal quantum devices. Our contribution also includes a bosonic version of the Unitary Coupled Cluster ansatz with physical interpretation in quantum field theory, a discussion about the subspace fidelity, a comparison among different bases in the 1+1 dimensional $\lambda \phi^4$ theory, and the "spectral crowding" in the quantum field theory simulation.
翻译:量子信息技术的快速发展展示了在近期量子装置中模拟量子场理论的极好机会。 在这项工作中,我们制定了(时间依赖的)变量模拟理论,专门为量子场理论的量子模拟而设计。我们开发了粒子散射实验中关键成分的混合量子古典算法,包括编码、状态准备和时间演进,同时用若干数字模拟来展示我们在 1+1 维 $@lambda\phi ⁇ 4$ 量子场理论中的算法。这些算法可以被理解为约旦-Lee-Preskill 算法的近期类比,这是使用通用量子装置模拟量子场理论的基本算法。我们的贡献还包括一个对量子场理论进行物理解释的Unitedary Compaced Croupatz的波音版、关于亚空间可靠性的讨论、对1+1 维维度 $lambda\phe4$理论中不同基础的比较以及量场理论中的“光谱挤”。