Order statistics play a fundamental role in statistical procedures such as risk estimation, outlier detection, and multiple hypothesis testing as well as in the analyses of mechanism design, queues, load balancing, and various other logistical processes involving ranks. In some of these cases, it may be desirable to compute the \textit{exact} values from the joint distribution of $d$ order statistics. While this problem is already computationally difficult even in the case of $n$ independent random variables, the random variables often have no such independence guarantees. Existing methods obtain the cumulative distribution indirectly by first computing and then aggregating over the marginal distributions. In this paper, we provide a more direct, efficient algorithm to compute cumulative joint order statistic distributions of dependent random variables that improves an existing dynamic programming solution via dimensionality reduction techniques. Our solution guarantees a $O(\frac{d^{d-1}}{n})$ and $O(d^{d})$ factor of improvement in both time and space complexity respectively over previous methods.
翻译:秩序统计在诸如风险估计、异常检测和多重假设测试等统计程序以及机制设计分析、队列、负荷平衡和涉及等级的其他各种后勤流程等方面发挥着根本作用。在其中一些情况下,似宜从联合分配的美元订单统计数据中计算\ textit{exact} 值。尽管这个问题在计算上已经很困难,即使在美元独立的随机变量中也是如此,但随机变量往往没有这种独立性保证。现有方法通过首先计算和然后汇总边际分布间接地获得累积分布。在本文件中,我们提供了一种更直接、高效的算法,用以计算依赖性随机变量的累积联合顺序统计分布,这些变量通过减少维度技术改进现有的动态编程解决方案。我们的解决方案保证在时间和空间复杂性方面分别比以往方法提高一个$(frac{d ⁇ d-1 ⁇ n}和$O(d ⁇ d})。