Based on sketching techniques, we propose two randomized algorithms for tensor ring (TR) decomposition. Specifically, by defining new tensor products and investigating their properties, we apply the Kronecker sub-sampled randomized Fourier transform and TensorSketch to the alternating least squares problems derived from the minimization problem of TR decomposition to devise the randomized algorithms. From the former, we find an algorithmic framework based on random projection for randomized TR decomposition. Theoretical results on sketch size and complexity analyses for the two algorithms are provided. We compare our proposals with the state-of-the-art method using both synthetic and real data. Numerical results show that they have quite decent performance in accuracy and computing time
翻译:根据草图技术,我们建议了两种抗拉环分解的随机算法。具体地说,我们通过定义新的抗拉产品并调查其特性,将Kronecker分抽样的随机Fourier变异和TensorSketch应用于交替的最小方块问题,这些问题来自尽量减少TR分解的问题,以设计随机算法。我们从前者找到一个基于随机预测的随机TR分解的算法框架。提供了两种算法的草图大小和复杂程度分析的理论结果。我们用合成数据和真实数据将我们的提案与最新方法进行比较。数字结果显示,在准确性和计算时间方面,它们的性能相当好。