In this paper, we use the dimensional reduction technique to study the central limit theory (CLT) random quadratic forms based on sample means and sample covariance matrices. Specifically, we use a matrix denoted by $U_{p\times q}$, to map $q$-dimensional sample vectors to a $p$ dimensional subspace, where $q\geq p$ or $q\gg p$. Under the condition of $p/n\rightarrow 0$ as $(p,n)\rightarrow \infty$, we obtain the CLT of random quadratic forms for the sample means and sample covariance matrices.
翻译:在本文中,我们使用维度减少技术来研究基于样本手段和样本共变矩阵的中央限值理论(CLT)随机二次形式。具体地说,我们使用以 $ ⁇ p\time q} 表示的矩阵,将 $q$-time 采样矢量映射为 $p$ 维次空间,其中$q\geq p 或 $q\gg p美元。在 $p/n\rightrior 0$ 以 $(p,n)\rightrowr\infty$ 的条件下,我们获得了用于样本手段和样本共变矩阵的随机二次形式CLT。