Extreme learning machine (ELM) as a neural network algorithm has shown its good performance, such as fast speed, simple structure etc, but also, weak robustness is an unavoidable defect in original ELM for blended data. We present a new machine learning framework called LARSEN-ELM for overcoming this problem. In our paper, we would like to show two key steps in LARSEN-ELM. In the first step, preprocessing, we select the input variables highly related to the output using least angle regression (LARS). In the second step, training, we employ Genetic Algorithm (GA) based selective ensemble and original ELM. In the experiments, we apply a sum of two sines and four datasets from UCI repository to verify the robustness of our approach. The experimental results show that compared with original ELM and other methods such as OP-ELM, GASEN-ELM and LSBoost, LARSEN-ELM significantly improve robustness performance while keeping a relatively high speed.
翻译:作为神经网络算法(ELM),极端学习机器(ELM)表现良好,例如速度快、结构简单等等,但是,强力弱是原始ELM中混合数据的一个不可避免的缺陷。我们为解决这一问题提出了一个称为LARSEN-ELM的新机器学习框架。在我们的论文中,我们希望用LARSEN-ELM显示两个关键步骤。在第一步,预处理中,我们使用最小角度回归(LARS)选择了与输出高度相关的输入变量。在第二步,培训中,我们使用基于基因阿尔戈里特姆(GA)的选择性合用词和原始ELM。在实验中,我们从UCI存放处应用了两个正弦和四个数据集来验证我们的方法的稳健性。实验结果表明,与原始ELM(OP-ELM)、GASEN-ELM和LSBOust(LSBOW)、LRSEN-ELM(LM)和LSBOust(LSBOWE)等原始方法相比,我们选择了两个关键变量。在保持相对较高速度的同时大大改进了稳健性性性性性。