We estimate best-approximation errors using vector-valued finite elements for fields with low regularity in the scale of fractional-order Sobolev spaces. By assuming additionally that the target field has a curl or divergence property, we establish upper bounds on these errors that can be localized to the mesh cells. These bounds are derived using the quasi-interpolation errors with or without boundary prescription derived in [A. Ern and J.-L. Guermond, ESAIM Math. Model. Numer. Anal., 51 (2017), pp.~1367--1385]. By using the face-to-cell lifting operators analyzed in [A. Ern and J.-L. Guermond, Found. Comput. Math., (2021)], and exploiting the additional assumption made on the curl or the divergence of the target field, a localized upper bound on the quasi-interpolation error is derived. As an illustration, we show how to apply these results to the error analysis of the curl-curl problem associated with Maxwell's equations.
翻译:我们使用分序 Sobolev 空间尺度中常规度低的字段的矢量价值有限元素来估计最佳误差。 此外,我们假设目标字段具有曲线或差异属性,就这些误差设定了可以定位到网状单元格的上限。这些误差是使用[A. Ern和J.-L. Guermond,ESAIM Math. Model. Num. Numer. Anal. 51 (2017), pp. ~1367-1385] 中得出的准内插错误。通过使用[A. Ern和J.-L. Guermond, Found.Comput. Math. (2021)] 中分析的面对细胞升动操作器,并利用对目标字段曲线或差异的额外假设,得出了准内插错误的局部上限。举例说,我们展示了如何将这些结果应用于与Maxwell 方程式相关的卷曲问题的错误分析。