We propose a Markov chain Monte Carlo-based deconvolution method designed to estimate the number of peaks in spectral data, along with the optimal parameters of each radial basis function. Assuming cases where the number of peaks is unknown, and a sweep simulation on all candidate models is computationally unrealistic, the proposed method efficiently searches over the probable candidates via trans-dimensional moves assisted by annealing effects from replica exchange Monte Carlo moves. Through simulation using synthetic data, the proposed method demonstrates its advantages over conventional sweep simulations, particularly in model selection problems. Application to a set of olivine reflectance spectral data with varying forsterite and fayalite mixture ratios reproduced results obtained from previous mineralogical research, indicating that our method is applicable to deconvolution on real data sets.
翻译:我们建议采用Markov链条蒙特卡洛分解法,用以估计光谱数据中的峰值数量,以及每个辐射基函数的最佳参数。假设峰值未知和对所有候选模型进行扫描模拟的情况在计算上是不现实的,则拟议方法在复制的蒙特卡洛移动的反射效果的协助下,通过跨维移动对可能的候选人进行有效搜索。通过模拟利用合成数据,拟议方法显示了其优于常规扫描模拟的优势,特别是在模型选择问题方面。将一组寡头反射光谱数据应用到从以前的矿物研究中复制的结果,这些结果显示我们的方法适用于真实数据集的演化。