Bayesian geoacoustic inversion problems are conventionally solved by Markov chain Monte Carlo methods or its variants, which are computationally expensive. This paper extends the classic Bayesian geoacoustic inversion framework by deriving important geoacoustic statistics of Bayesian geoacoustic inversion from the multidimensional posterior probability density (PPD) using the mixture density network (MDN) theory. These statistics make it convenient to train the network directly on the whole parameter space and get the multidimensional PPD of model parameters. The present approach provides a much more efficient way to solve geoacoustic inversion problems in Bayesian inference framework. The network is trained on a simulated dataset of surface-wave dispersion curves with shear-wave velocities as labels and tested on both synthetic and real data cases. The results show that the network gives reliable predictions and has good generalization performance on unseen data. Once trained, the network can rapidly (within seconds) give a fully probabilistic solution which is comparable to Monte Carlo methods. It provides an promising approach for real-time inversion.
翻译:Bayesian地球声学自转问题通常由Markov链条Monte Carlo 或其变体解决,这些变体在计算上费用很高。本文扩展了典型的Bayesian地球声学自转框架,利用混合密度网络理论(MDN)从多维远地点概率密度(PPD)中得出了Bayesian地球声学自转的重要地球声学统计数据。这些统计数据使得能够直接对网络进行整个参数空间的培训,并获得模型参数的多维PPD。目前的方法为解决Bayesian推断框架中的地球声学自转问题提供了效率高得多的方法。网络接受了模拟数据数据集的培训,该模拟数据集以剪波速度为标签,并在合成和真实数据案例上进行了测试。结果显示,网络提供了可靠的预测,对不可见数据的概括性表现良好。经过培训后,网络可以迅速(在几秒钟内)给出一个完全可与蒙特卡洛方法相仿的预测性解决方案。它为实时反转提供了很有希望的方法。