Relational tables on the Web store a vast amount of knowledge. Owing to the wealth of such tables, there has been tremendous progress on a variety of tasks in the area of table understanding. However, existing work generally relies on heavily-engineered task-specific features and model architectures. In this paper, we present TURL, a novel framework that introduces the pre-training/fine-tuning paradigm to relational Web tables. During pre-training, our framework learns deep contextualized representations on relational tables in an unsupervised manner. Its universal model design with pre-trained representations can be applied to a wide range of tasks with minimal task-specific fine-tuning. Specifically, we propose a structure-aware Transformer encoder to model the row-column structure of relational tables, and present a new Masked Entity Recovery (MER) objective for pre-training to capture the semantics and knowledge in large-scale unlabeled data. We systematically evaluate TURL with a benchmark consisting of 6 different tasks for table understanding (e.g., relation extraction, cell filling). We show that TURL generalizes well to all tasks and substantially outperforms existing methods in almost all instances.


翻译:网络上的关系表存储了大量知识。由于这些表的丰富,在表格理解领域的各种任务方面取得了巨大进展。然而,现有工作一般依赖于设计繁重的任务特点和模型结构。本文介绍TURL,这是一个将培训前/调整模式引入关系网表格的新框架。在培训前,我们的框架以不受监督的方式在关系表上学习了深层次背景化的表述。其具有预先培训的表述面貌的普遍模式设计可应用于一系列任务,且任务特定微调极少。具体地说,我们提议一个结构有觉悟的变异器编码器,以模拟关系表的行边结构,并提出一个新的蒙面实体恢复(MER)目标,用于培训前,以获取大规模无标签数据中的语义和知识。我们系统地评估TUR,其基准包括6项不同的表格理解任务(例如,相关提取、单元格填充)。我们显示,TURL在几乎所有情况下,都对任务和现有方法都进行了概括。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
318+阅读 · 2020年11月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
13+阅读 · 2020年4月12日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
318+阅读 · 2020年11月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员