We give a proof that, under relatively mild conditions, fully-connected feed-forward deep random neural networks converge to a Gaussian mixture distribution as only the width of the last hidden layer goes to infinity. We conducted experiments for a simple model which supports our result. Moreover, it gives a detailed description of the convergence, namely, the growth of the last hidden layer gets the distribution closer to the Gaussian mixture, and the other layer successively get the Gaussian mixture closer to the normal distribution.
翻译:我们证明,在相对温和的条件下,完全连接的进取前向深层随机神经网络会聚集到高斯混合体的分布中,因为只有最后隐藏层的宽度才会进入无穷无尽状态。我们实验了一个支持我们结果的简单模型。此外,它详细描述了趋同情况,即最后隐藏层的生长使分配更接近高斯混合体,而另一层则接连使高斯混合体接近正常分布。